

Data Sheet | Force Transfer Standard Series KTN-D

Nominal Force 10 kN – 5 MN

Applications | Key Facts

Applications: round robin tests of national metrology institutes (NMI)

- among each other | traceability of accredited calibration laboratories | reference force transducer or master sensor in calibration machines
- GTM accuracy class VN | exceeds ISO 376 class 00 many times over
- ISO 376 accuracy classes: 00 and 0.5
- Static compression forces
- Hermetically sealed
- Insensitive to changes in force application
- Insensitive to disturbing forces and torques
- Low weight and simple mechanical adaptation

Options | Accessories

- ► Selectable measuring range for ISO 376 accuracy class | 10% 100% | 20% 100%
- Optional second axial measuring circuit for redundancy
- Optional bending moment measuring circuits Mx, My
- Extensive electrical connection options
- Extensive ISO 376 compliant mechanical accessories | also customized solutions on request
- Customized transducer variants on request | also in small quantities

Technical Data | Classification

Nominal force/kN	10	20	25	30	50	100	200	250	300	500	600	1000	1200	2000	3000	5000
Class																
VN ¹⁾	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
00 ²⁾	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
0,5 ²⁾	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

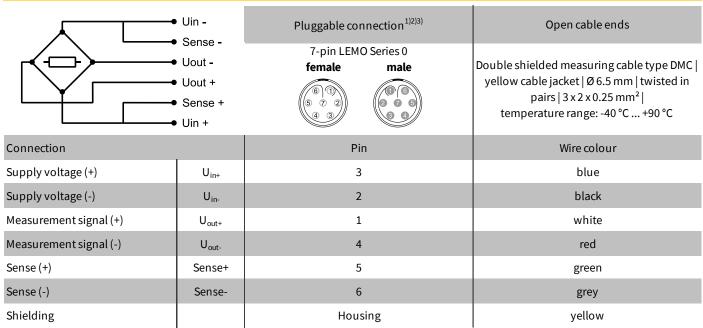
¹⁾ GTM-Classification, better then class 00 according to ISO 37

Technical Data | Class VN

	Nominal force	F_{nom}	kN	10	20	25	30	50	100	200	250	300	500	600	1000	1200
	Force measurment range		%							40 - 100						
	Interpolation error	f_c	%							0.002						
	Reversibility error	v	%							0.06						
	Repeatability error in unchanged mounting position	<i>b</i> , <i>b</i> _{rg}	%							0.002						
	Reproducibility error in different mounting positions	b', b _{rv}	%							0.005						
	Zero error	f_{θ}	%						0.0	800						
ata	Creep		%							0.008						
Metrological Data	Temperature effect on characteristic value per 10 K	TK _C	%/10 K							0.01						
Metrol	Temperature effect on zero signal per 10 K	TK_{θ}	%/10 K							0.01						
	Rated characteristic value	C_{nom}	mV/V							2						
	Input resistance	$R_{arepsilon}$	Ω		>1200					>11	100				>14	100
	Output resistance	R_a	Ω						>900						>11	100
ata	Insulation resistance	R is	Ω							> 109						
Electrical Data	Operating range of excitation voltage	$B_{U,G}$	V						5 -	- 12						
Elect	Protection (DIN EN 60529)									54						
	Mass transducer	m	kg		1		2.	3	2.4	4.5	4.8		7.7		15	i.6
	Mass thrust piece	m	kg		0,2		0.	5	0.5	0.9	0.9		2.3		5.	.5
	Force limit		%						1	.10						
	Breaking force		%							200						
l Data	Permissible eccentricity	e_G	mm						5						1	0
Mechanical Data	Rated temperature range	B _{T, nom}	°C							17 - 27						
Mech	Operating temperature range	$B_{T,G}$	°C							10 - 35						

²⁾ Class according to ISO 376 | measuring range selectable

Technical Data | Class 00


_	ceillicut i	Jul																	
	Nominal force	F_{nom}	kN	10	20	25	30	50	100	200	250	300	500	600	1000	1200	2000	3000	5000
7	Force measurment range		%						'		10	- 100							'
	Interpolation error	f_c	%								0	.02							
	Reversibility error	ν	%								0.	.06							
	Repeatability error in unchanged mounting position	<i>b</i> , <i>b</i> _{rg}	%								0.	023							
	Reproducibility error in different mounting positions	b', b _{rv}	%								0.	045							
	Zero error	f_0	%								0	.01							
Jata	Creep		%								0	.01							
Metrological Data	Temperature effect on characteristic value per 10 K	TK_C	%/10 K								0.	.01							
Metrolo	Temperature effect on zero signal per 10 K	TK_{θ}	%/10 K								0.	.01							
	Rated characteristic value	C_{nom}	mV/V									2							
	Input resistance	R_{e}	Ω		>1200					>1	100				>14	100	>1100	>9	00
	Output resistance	R_a	Ω						>900						>13	100	>900	>8	00
)ata	Insulation resistance	R_{is}	Ω								>	10 ⁹							
Electrical Data	Operating range of excitation voltage	$B_{U,G}$	V								5	- 12							
Elect	Protection (DIN EN 60529)											54							
	Mass transducer	m	kg		1		2	2.3	2.4	4.5	4.8		7.7		15	5.6	39.4	124.3	133
	Mass thrust piece	m	kg		0.2		(0.5	0.5	0.9	0.9		2.3		5.	.5	18.6	36.7	36.7
	Force limit		%								1	10							
	Breaking force		%								2	.00							
Mechanical Data	Permissible eccentricity	e_G	mm						5						10				
าลทเดย	Rated temperature range	$B_{T, nom}$	°C								17	- 27							
Mecr	Operating temperature range	$B_{T,G}$	°C								10	- 35							

Technical Data | Class 0.5

	. C. I I I Cat D	164		M		_	•••											
	Nominal force	F_{nom}	kN	10	20	25	30 50	100	200	250	300	500	600	1000	1200	2000	3000	5000
	Force measurment range		%								20 - 10	00						
	Interpolation error	f_c	%								0.04							
	Reversibility error	ν	%								0.14							
	Repeatability error in unchanged mounting position	<i>b</i> , <i>b</i> _{rg}	%								0.045							
	Reproducibility error in different mounting positions	b', b rv	%								0.09							
	Zero error	f_0	%								0.02							
ata	Creep		%								0.02							
Metrological Data	Temperature effect on characteristic value per 10 K	TK_C	%/10 K								0.02							
Metrol	Temperature effect on zero signal per 10 K	TK_{0}	%/10 K								0.02							
	Rated characteristic value	C_{nom}	mV/V								2							
	Input resistance	R_{e}	Ω		>1200				>	1100				>14	400	>1100	>9	00
	Output resistance	R_a	Ω					>9	000					>1:	100	>900	>8	00
ata	Insulation resistance	R_{is}	Ω								> 109							
Electrical Data	Operating range of excitation voltage	$B_{U,G}$	V								5 - 12	2						
Elect	Protection (DIN EN 60529)										54							
	Mass transducer	m	kg		1		2.3	2.4	4.5	4.8		7.7		15	.6	39.4	124.3	133
	Mass thrust piece	m	kg		0,2		0.5	0.5	0.9	0.9		2.3		5.	.5	18.6	36.7	36.7
	Force limit		%								110							
	Breaking force		%								200							
Mechanical Data	Permissible eccentricity	e_G	mm						5							10		
nanica	Rated temperature range	B _{T, nom}	°C								17 - 2	7						
Meck	Operating temperature range	$B_{T,G}$	°C								10 - 3	5						

Cable Connection

¹⁾ View too welding side

► Pluggable cable connection

All transducers of the KTN-D series can be equipped with a pluggable LEMO socket (on all measuring circuits selected). Suitable measuring cables S-CAB / C- CAB are available as accessories.

► Fixed measuring cable

All transducers of the KTN-D series can be equipped with permanently mounted measuring cables, e.g. with 5 / 10 m double-shielded measuring cable type DMC. The cable ends can be optionally open or equipped with various connectors for strain gauge amplifier connections.

► Plug-in cable connection with double-shielded measuring cable type DMC (S-CAB-DMC-L-5M-F)

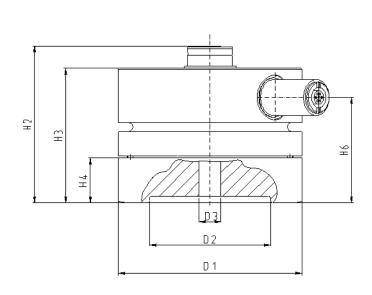
► Fixed double-shielded measuring cable type DMC with open cable ends or with assembled plug for strain gauge amplifier connection

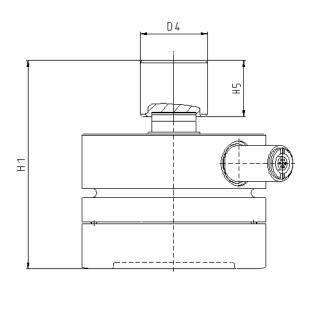
²⁾ Female LEM O S.A. Typ: EGG.1B.307.CLL; Male: FGG.1B.307.CLA.D72

³⁾ In the nominal force 5 N - 100 N, the connection sockets (female) are led to the outside with a black measuring cable type FM C | 30 cm | Ø 2.9. let outwards

Double Bridge | from 10 kN

► For version with double measuring bridge (from 10 kN), the technical data apply equally to both measuring circuits.


Bending Moment Measuring Circuits | from 10 kN


► The bending moment measuring circuits Mx and My (from 10 kN) can be used advantageously with the use of a multichannel measuring amplifier to control the force application.

Nominal force	F _{nom}	kN	10 - 5000 (2mV/V)
Temperature effect on characteristic value per 10 K	TK _C	%/10 K	0.2
Temperature effect on zero signal per 10 K	TK o	%/10 K	0.2
Input resistance	R _e	Ω	400
Operating range of excitation voltage	В _{И, G}	V	5 - 12

Dimensions

Standard delivery scope

Accessories: thrust piece

Nominal force	F nom	kN	10	20	25	30	30 50 100			250			600	1000 1200		2000	3000	5000
Diameter	ØD ₁	mm		82			92		12	20		140		20	00	270	3	75
Diameter	ØD ₂	mm		54			64		8	5		100		17	77	228	31:	2.6
Diameter	ØD₃	mm						10 ^{H7}						15	50	215	25	H8
Diameter	ØD₄	mm		30			42		5	4		80		1:	10	160	20	00
Height	H ₁	mm		93			107		1:	24		149		19	95	267	36	60
Height	H ₂	mm			7	0			7	7		93		12	25	153	2:	13
Height	Нз	mm			6	60			66	.75		82.35		10	03	140	19	97
Height	H ₄	mm						20							25		3	37
Height	H ₅	mm		25			39		4	9		58		7	5	119	15	53
Height	H ₆	mm		47				46				54.5		73	3.5	126	16	67

Order Numbers | Configurable Variants

► Force transfer standard series KTN-D | configurable variants

1: 2: 3: 5: 1: 2: Nominal Force 3: 5: 6:	10K0 20K0 25K0 30K0 50K0 100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	Configurable force transfer standard series KTN-D 10 kN 20 kN 25 kN 30 kN 50 kN 100 kN 200 kN 200 kN 200 kN 200 kN 200 kN 2100 kN 220 kN 250 kN 250 kN 250 kN 200 kN 250 kN 200 kN 250 kN 200 kN 250 kN
2 2. 3 5 1 2 Nominal Force 2 3 5 6	10K0 20K0 25K0 30K0 50K0 100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	10 kN 20 kN 25 kN 30 kN 50 kN 100 kN 200 kN 200 kN 250 kN 300 kN 500 kN 100 kN 100 kN
2. 33 5. 12 2. Nominal Force 3. 5. 6. 1.	25K0 30K0 50K0 100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	25 kN 30 kN 50 kN 100 kN 200 kN 250 kN 300 kN 500 kN 500 kN 500 kN 600 kN
3 5 1 2 Nominal Force 3 5 6 1	30K0 50K0 100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	30 kN 50 kN 100 kN 200 kN 250 kN 300 kN 500 kN 500 kN 600 kN 1 MN
5 1 2 2 Nominal Force 3 5 6 1	50K0 100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	50 kN 100 kN 200 kN 250 kN 300 kN 500 kN 600 kN 1 MN 1.2 MN
10 22 Nominal Force 3 5 6 1	100K 200K 250K 300K 500K 600K 1M00 1M20 2M00	100 kN 200 kN 250 kN 300 kN 500 kN 600 kN 1 MN 1.2 MN
Nominal Force 2 3 5 6 1	200K 250K 300K 500K 600K 1M00 1M20 2M00	200 kN 250 kN 300 kN 500 kN 600 kN 1 MN 1.2 MN
Nominal Force 2 3 5 6 1	250K 300K 500K 600K 1M00 1M20 2M00	250 kN 300 kN 500 kN 600 kN 1 MN 1.2 MN
30 3 3 5 6 1 1 1 1 1 1 1 1 1	300K 500K 600K 1M00 1M20 2M00	300 kN 500 kN 600 kN 1 MN 1.2 MN
3i 5i 6i 1	500K 600K 1M00 1M20 2M00	500 kN 600 kN 1 MN 1.2 MN
6 <u>1</u>	600K 1M00 1M20 2M00	600 kN 1 MN 1.2 MN
1	1M00 1M20 2M00	1 MN 1.2 MN
<u> </u>	1M20 2M00	1.2 MN
1	2M00	
		2 MN
2	3M00	2 11114
3	JIVIOU	3 MN
5	5M00	5 MN
0.	05	ISO 376 class 0.5
Accuracy class 0	00	ISO 376 class 00
V	VN	GTM class VN
1	10	ISO 376 10 - 100 %
Measuring range accuracy class 2	20	ISO 376 20 - 100 %
4	40	GTM VN 40 - 100 %
Single or double measuring bridge	SB	Single bridge
D D D D D D D D D D D D D D D D D D D	DB	Double bridge
Bending moment measuring circuits M	NO	No bending moment measuring circuits Mx, My
B	BM	Bending moment measuring circuits Mx, My
Temperature range S	S	Standard temperature range +17°C +27°C
Electrical transducer connection P	Р	LEMO female plug(s) selected 7-pole push-pull
(for all selected measuring circuits)	A	5 m permanently mounted standard measuring cables type DMC for all measuring circuits
(for all selected measuring circuits)		10 m permanently mounted standard measuring cables type DMC for all measuring circuits
P	Р	LEMO female plug(s) selected no permanently mounted measuring cable(s)
F	F	Free cable ends on one permanently mounted measuring cable for all measuring circuits
Cable connection type (for all selected A	A	D-Sub 9 Pol on one permanently mounted measuring cable for all measuring circuits
measuring circuits) B	В	D-Sub 15 Pol on one permanently mounted measuring cable for all measuring circuits
С	С	MS 7 Pol on one permanently mounted measuring cable for all measuring circuits
D	D	HD-Sub 15 Pol 3-row on one permanently mounted measuring cable for all measuring circuits

Notes:

Order example

C - KTN_D -	250K	- 00]-[20	-	SB	-	NO	-[S]-	Α]-	F
	250 kN	ISO 376 class 00		ISO 376 10 - 100 %		single bridge		no bending moment circuits Mx, My		standard temperature range	ı	5 m permanently mounted cable type DM C		free cable ends

[►] Not all variants can be freely combined.

Order Numbers | Configurable Variants

Item	Description
Accuracy class acc. to	Force transducers calibrated according to ISO 376 are divided into accuracy classes. The highest accuracy class
ISO 376 GTM	is class 00, followed by 0.5 and others. A smaller accuracy class represents a more precise sensor. GTM force transfer transducers that meet the requirements of an ISO 376 accuracy class are called reference force transducers or transfer standards. These transducers achieve defined accuracy classes in a specified measuring range, e.g. the force transducer KTN-D achieves accuracy class 00 according to ISO 376 in a measuring range between min. 10 % and 100 % of the nominal force. In addition, GTM also offers the KTN-D series as GTM class VN. This class exceeds the ISO 376 class 00 by a multiple and is characterized, for example, by outstanding precision and a particularly high repeatability.
Measuring range accuracy class	The measuring range indicates in which measuring range the transducer complies with the selected class. Through internal quality assurance processes, we always ensure that the specified accuracy class is maintained in the selected measuring range. We always recommend a GTM internal calibration of the transducer incl. standard compliant attachments. Every transducer calibrated according to ISO 376 receives a calibration certificate, which provides an evaluation of the characteristic values of the sensor and information about the calibration equipment used, the traceability and measurement uncertainty as well as the environmental conditions during the calibration process. In the calibration certificate, in addition to other technical information, you will find, for example, the measurement uncertainties of the calibrated force transducer for the respective load levels
Single or double measuring bridge	For redundancy reasons, it is necessary, for example in safety-relevant applications, to check the safety-relevant integrity of the measuring signal by means of a second measuring bridge (functional redundancy in the same force transducer). Two force transducer output signals are processed and evaluated independently of each other via two separate measuring amplifier channels. This makes it possible to connect two measuring amplifiers with different characteristics (DC / TF). The second redundant measuring circuit, is characterised by no crosstalk between the channels at different carrier frequencies. Notes: The option double measuring bridges can be selected from 10 kN and has an effect on the number of connection sockets or fixed double-shielded measuring cables (if selected).
Bending moment	The force transfer transducer series KTN-D can be equipped with bending moment measuring circuits
measuring circuits Mx,	optional. The additional bending moment measuring circuits can be measured to control the horizontal bending moments Mx and My and can be provided as separate channels. Notes: The option bending moment measuring circuits Mx, My is available from 10 kN and has an effect on the number of connection sockets or fixed double shielded measuring cables (if selected). A combination of double measuring bridges is possible on request.
Temperature range	The KTN-D series force transfer transducer can be used in a nominal temperature range of +17°C +27°C. Notes: Please observe the corresponding ambient conditions and ensure that there are no significant temperature fluctuations. These can possibly have an effect on the metrological performance.
Electrical transducer connection	The KTN-D series force transfer transducer can be configured with fixed push-pull connectors or fixed double shielded measuring cables (type DMC) in different lengths. Notes: The number of connection sockets or measuring cables is determined by the number of measuring bridges selected. Double shielded test lead(s) type DMC are always used as fixed test lead(s).
Cable connection type	If the KTN-D series is configured with fixed double shielded measuring cables, different connector types for high precision strain gauge measuring amplifiers can be selected in addition to open cable ends. The assembly of the selected connector plugs is done by GTM. The transducer can be connected directly to a measuring amplifier.

Order Numbers | Accessories

Description	Order number
Measuring cables	
Double-shielded measuring cable yellow 5 m double shielded and twisted in pairs	
cable sheath Ø 6.5 mm 6-wire technology transducer connection: straight plug (male)	S-CAB-DMC-L-5M-F
type LEMO 7-pole push-pull (male) cable end amplifier: open	
Configurable measuring cable type DMC and others in different lengths with different	C CAR DIAG
connectors for amplifier connection	C-CAB-DMC
Series KTN-D Thrust piece (1 piece)	
Series KTN-D 10 kN thrust piece	S-MA-KTN_D-TP-01
Series KTN-D 20 - 25 kN thrust piece	S-MA-KTN_D-TP-02
Series KTN-D 50 kN thrust piece	S-MA-KTN_D-TP-03
Series KTN-D 100 kN thrust piece	S-MA-KTN_D-TP-04
Series KTN-D 200 - 250 kN thrust piece	S-MA-KTN_D-TP-05
Series KTN-D 300 kN thrust piece	S-MA-KTN_D-TP-06
Series KTN-D 1 - 1.2 MN thrust piece	S-MA-KTN_D-TP-08
Series KTN-D 2 MN thrust piece	S-MA-KTN_D-TP-09
Series KTN-D 3 MN thrust piece	S-MA-KTN_D-TP-10
Series KTN-D 5 MN thrust piece	S-MA-KTN_D-TP-11

Notes:

► GTM recommends the use of standard-compliant GTM components for the KTN-D series in all cases. GTM calibration is performed as a whole unit. Transducer + mechanical accessories.

Series KTN-D Cases	
Case for series KTN-D 10 - 20 kN	S-TC-KTN_D-01
Case for series KTN-D 50 - 100 kN	S-TC-KTN_D-02
Case for series KTN-D 200 - 250 KN	S-TC-KTN_D-03
Case for series KTN-D 500 kN	S-TC-KTN_D-04
Case for series KTN-D 1 MN	S-TC-KTN_D-05
Flight case for series KTN-D 2 MN	S-TC-KTN_D-06
Flight case for series KTN-D 3 - 5 MN	S-TC-KTN_D-07
Flight case for series KTN-D 10 MN	S-TC-KTN_D-08

Notes:

- ► GTM recommends in any case to use the series KTN-D with transport case.
- ▶ More stable flight cases are used for nominal forces from 2 MN.

