

Datenblatt

Mehrkomponentenaufnehmer Serie DKA-ZE

(0,5 kN - 10 kN)

Vorteile/Anwendung

- Genauigkeitsklasse 0,2 und 0,3
 - Kompakte Bauform

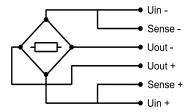
Geringes Gewicht

- ► 6-Leiter Anschlusstechnik
- Besonders einfache Montage
- Kraftverhältnisse FZ / FX,Y = 10:1

Technische Daten

	Nennkräfte	±F _x ±F _y ±F _z	kN	0,05 0,05 0,5	0,1 0,1 1	0,2 0,2 2	0,5 0,5 5	1 1 10	
	Genauigkeitsklasse			0,2 0,3					
	Linearitätsabweichung	d_{lin}	%		0	,2		0,3	
	Hysterese	h	%	0,1 0,2				0,2	
	Reproduzierbarkeit		%	0,01 0,025					
ten	Kriechen		%	0,05					
he Da	Temperatureinfluss auf den Kennwert pro 10 K	TK _C	%/10K	0,1					
chnisc	Temperatureinfluss auf das Nullsignal pro 10 K	TK_0	%/10K	0,1					
Messtechnische Daten	Zug-/Druckkraft- Kennwertunterschied	d _{ZD} x, y z	%	0	,1 1		,2 2	0,3 3	
	Nennkennwert	C_{Fx} , C_{Fy} C_{Fz}	mV/V	0,7 1,0	1,4 2	1,8 1,5	1,8 1,5	1,5 2	
	Eingangswiderstand	R_{e}	Ω			350 - 450			
u.	Ausgangswiderstand	R_a	Ω	350					
Date	Isolationswiderstand	R_{is}	Ω	>109					
Elektrische Daten	Nennbereich der Versorgungsspannung	$B_{U,G}$	V	5 - 12					
Elektr	IP-Schutzart (DIN EN 60529)			IP 40					
	Nennmessweg	S _{xnom} S _{ynom} S _{znom}	mm	0,01 0,01 0,02	0,02 0,02 0,03	0,02 0,02 0,02	0,04 0,04 0,05	0,04 0,04 0,08	
	Federsteifigkeit	c_{ax} c_{ay} c_{az}	kN/mm	5 10 12,5 5 10 12,5 25 100 100		25 25 125			
	Masse	m	kg	0,06 0,15 0,4		,4			
Mechanische Daten	Anteilige bewegte Masse	m _{mess}	kg	0,05 0,09 0,25		0,26			
	Resonanzfrequenzen	$egin{array}{c} f_x \ f_y \ f_z \end{array}$	kHz	0,	03 03 ,1	1,7 1,7 5,3	1,1 1,1 3,2	1,6 1,6 3,5	
Mec	Zulässige Schwingbeanspruchung		%			±80			

GTM

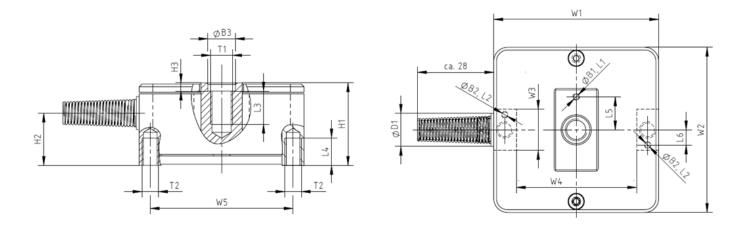

Technische Daten

	Nennkräfte	±F _x ±F _y ±F _z	kN	0,05 0,05 0,5	0,1 0,1 1	0,2 0,2 2	0,5 0,5 5	1 1 10
	Grenzkraft ¹⁾	$egin{array}{ccc} F_x & & & & & & & & & & & & & & & & & & &$	%	150 150 150				
	Bruchkraft ¹⁾	F_x F_y F_z	%	300 300 300 300 300 300 300 250 300		300	300 300 225	
	Nenntemperaturbereich	B _{T, nom}	°C	10 - 60				
erte	Gebrauchstemperaturbereich	$B_{T,G}$	°C	5 - 80				
Grenzwerte	Zulässige Exzentrizität	e_{Fx} e_{Fy} e_{Fz}	mm	150 150 25	50 50 20	50 50 5	150 150 20	55 55 5

¹⁾ Bei einzeln auftretenden Komponenten

Kabelanschluss

Fester Kabelanschluss Kabelende offen


Schwarzes Kabel 6-adrig Ø 2,9 mm schwingfest, 6×0.04 mm² Temperaturbereich: -50 $^{\circ}$ C bis +105 $^{\circ}$ C

Anschluss		Adernfarbe			
Speisespannung (+)	U _{in+}	Blau			
Speisespannung (-)	U _{in-}	Schwarz			
Messsignal (+)	U _{out+}	Weiß			
Messsignal (–)	U _{out-}	Rot			
Fühlersignal (+)	Sense+	Grün			
Fühlersignal (–)	Sense-	Gelb			
Schirmung		Grau			

Kabelende offen, Länge 3 m

Haupt- und Anschlussmaße

Nennkraft Druck/Zug	± Fnom Fx Fy Fz	kN	0,05 0,05 0,5	0,1 0,1 1	0,2 0,2 2	0,5 0,5 5	1 1 10
Bohrung	$\emptyset B_{I}$	mm			2		
Bohrung	$\emptyset B_2$	mm			2		
Bohrung	$\emptyset B_3$	mm			10		
Durchmesser	$\not OD_1$	mm			12		
Gewinde	T_{I}	mm			M8		
Gewinde	T_2	mm	М	5		M6	
Höhe	H_{I}	mm	23			32	
Höhe	H_2	mm	11		19		
Höhe	H_3	mm			3		
Länge	L_{I}	mm	5				
Länge	L_2	mm	5				
Länge	L_3	mm	8			12	
Länge	L_4	mm	(5		10	
Länge	L_{5}	mm			12		
Länge	L_6	mm			5,5		
Breite	W_{I}	mm	60				
Breite	W_2	mm	60				
Breite	W_3	mm	15				
Breite	W_4	mm	44				
Breite	W_5	mm			52		

Typische normierte Empfindlichkeiten

Signal	F _x	F _y	F_z
F _x	1	0,01	0,01
F _y	0,01	1	0,03
F _z	0,02	0,03	1

